Changes in transmission in the pathway of heteronymous spinal recurrent inhibition from soleus to quadriceps motor neurons during movement in man.
نویسندگان
چکیده
H reflexes were induced in the human quadriceps muscle by electrical stimulation of the femoral nerve. The reflexes were conditioned by prior stimulation of the inferior soleus nerve. The conditioning stimulus produced an inhibition of long duration (>20 ms). The threshold of this inhibition was at zero soleus motor discharge and the inhibition scaled with soleus motor discharge. It was concluded that the inhibition was a heteronymous recurrent inhibition of quadriceps motor neurons mediated by Renshaw cells which had been activated by soleus motor neuron discharge. This recurrent inhibition declined during voluntary tonic contraction of the quadriceps, falling to zero at around one-third of maximum voluntary contraction. Antagonist contraction and weak co-contraction of the quadriceps and its antagonists did not lead to any significant change in recurrent inhibition. It is concluded that motor commands descending from the brain reduce heteronymous recurrent inhibition during isolated quadriceps muscle contraction, but to a much lesser extent during co-contraction. No evidence was obtained for any descending facilitation of heteronymous recurrent inhibition.
منابع مشابه
Task-related changes of transmission in the pathway of heteronymous spinal recurrent inhibition from soleus to quadriceps motor neurones in man.
An H reflex conditioning technique was used to monitor the transmission of heteronymous recurrent inhibition from soleus to quadriceps motor neurones of the human lower limb. Inhibition declined during quadriceps muscle contraction under all conditions examined, falling to zero at around one-third of the maximum voluntary contraction. Inhibition declined during soleus muscle contraction in sitt...
متن کاملA quantitative assessment of presynaptic inhibition of Ia afferents in spastics. Differences in hemiplegics and paraplegics.
Soleus H-reflex facilitation evoked by a supramaximal conditioning stimulation to the femoral nerve was investigated in 28 healthy control subjects and 35 spastic patients of whom 17 were paraplegics with bilateral spinal cord lesion and 18 were hemiplegics with unilateral cerebral lesion. Heteronymous facilitation from quadriceps to soleus was measured 0.4 ms after onset, while the monosynapti...
متن کاملTransmission in Heteronymous Spinal Pathways Is Modified after Stroke and Related to Motor Incoordination
Changes in reflex spinal pathways after stroke have been shown to affect motor activity in agonist and antagonist muscles acting at the same joint. However, only a few studies have evaluated the heteronymous reflex pathways modulating motoneuronal activity at different joints. This study investigates whether there are changes in the spinal facilitatory and inhibitory pathways linking knee to an...
متن کاملPresynaptic and postsynaptic effects of the anesthetics sevoflurane and nitrous oxide in the human spinal cord.
BACKGROUND Reduced spinal excitability contributes to the suppression of movement responses to noxious stimuli during the anesthetic state. This study examines and compares presynaptic and postsynaptic effects of two anesthetics in the human spinal cord. METHODS The authors tested two parameters during the administration of 0.8 vol% sevoflurane or 40 vol% nitrous oxide compared with control s...
متن کاملModulation of transmission in the corticospinal and group Ia afferent pathways to soleus motoneurons during bicycling.
Transmission in the corticospinal and Ia pathways to soleus motoneurons was investigated in healthy human subjects during bicycling. Soleus H reflexes and motor evoked potentials (MEPs) after transcranial magnetic stimulation (TMS) were modulated similarly during the crank cycle being large during downstroke [concomitant with soleus background electromyographic (EMG) activity] and small during ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain : a journal of neurology
دوره 122 ( Pt 9) شماره
صفحات -
تاریخ انتشار 1999